
The GLACE-Hydrology Experiment: Effects of Land–Atmosphere Coupling on Soil
Moisture Variability and Predictability

SANJIV KUMAR,a MATTHEW NEWMAN,b,c DAVID M. LAWRENCE,d MIN-HUI LO,e SATHISH AKULA,f

CHIA-WEI LAN,e BEN LIVNEH,b,g AND DANICA LOMBARDOZZI
d

aEarth System Science Program, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama
bCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

cNOAA Physical Sciences Laboratory Boulder, Colorado
dNational Center for Atmospheric Research, Boulder, Colorado

eDepartment of Atmospheric Sciences, National Taiwan University, Taiwan
fDepartment of Computer Science and Software Engineering, Auburn University, Auburn, Alabama

gDepartment of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado

(Manuscript received 7 August 2019, in final form 1 April 2020)

ABSTRACT

The impact of land–atmosphere anomaly coupling on land variability is investigated using a new two-stage

climate model experimental design called the ‘‘GLACE-Hydrology’’ experiment. First, as in the GLACE-

CMIP5 experiment, twin sets of coupled land–atmosphere climate model (CAM5-CLM4.5) ensembles are

performed, with each simulation using the same prescribed observed sea surface temperatures and radiative

forcing for the years 1971–2014. In one set, land–atmosphere anomaly coupling is removed by prescribing

soil moisture to follow the control model’s seasonally evolving soil moisture climatology (‘‘land–atmosphere

uncoupled’’), enabling a contrast with the original control set (‘‘land–atmosphere coupled’’). Then, the atmo-

spheric outputs from both sets of simulations are used to force land-only ensemble simulations, allowing in-

vestigation of the resulting soil moisture variability and memory under both the coupled and uncoupled sce-

narios. This study finds that in midlatitudes during boreal summer, land–atmosphere anomaly coupling signif-

icantly strengthens the relationship between soil moisture and evapotranspiration anomalies, both in amplitude

and phase. This allows for decreased moisture exchange between the land surface and atmosphere, increasing

soil moisture memory and often its variability as well. Additionally, land–atmosphere anomaly coupling impacts

runoff variability, especially in wet and transition regions, and precipitation variability, although the latter has

surprisingly localized impacts on soil moisture variability. As a result of these changes, there is an increase in the

signal-to-noise ratio, and thereby the potential seasonal predictability, of SST-forced hydroclimate anomalies in

many areas of the globe, especially in the midlatitudes. This predictability increase is greater for soil moisture

than precipitation and has important implications for the prediction of drought.

1. Introduction

Understanding the causes and predictability of drought

is of societal importance (Cheng et al. 2016; Evans et al.

2017; Held et al. 2005; Hoerling et al. 2014; Livneh and

Hoerling 2016). The 2012 drought, the most spatially

extensive U.S. drought in the instrumental record from

1895 to the present, resulted in $33.9 billion economic

losses, largely from the agricultural sector (Hoerling et al.

2014; NCEI 2019; Rippey 2015). Many investigators have

highlighted the importance of remote oceanic forcing on

drought development and prediction (Ault et al. 2018;

Hoell et al. 2016; Kam et al. 2014; Swain 2015;Wang et al.

2014; Wei et al. 2016). However, in their drought syn-

thesis study, Schubert et al. (2016) demonstrated limita-

tions in large-scale SST-driven predictability of droughts

and suggested that additional sources of predictability

should be explored, including land–atmosphere coupling.

A significant precipitation deficit relative to normal is

said to cause a ‘‘meteorological drought’’; an ‘‘agricultural

drought’’ may be a consequence of the resulting soil

moisture deficit (Sheffield and Wood 2011), which also in-

corporates effects of the land processes, such as soil mois-

ture memory, snowmelt, runoff, and evapotranspiration.
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Soil moisture exhibits considerably longer memory than

precipitation, so soil moisture memory can potentially

contribute to drought predictability (Amenu et al. 2005;

Guo et al. 2012; Kumar et al. 2014b; Orth and Seneviratne

2013; PaiMazumder and Done 2016), including through

a climate process called ‘‘soil moisture anomaly re-

emergence’’ described by Kumar et al. (2019). Their

study showed that root zone soil moisture anomalies

could recur several seasons or more than a year after

they were initiated, indicating potential interannual

predictability.

Drought impacts vegetation, whose phenology in turn

affects surface reflective properties (surface albedo) and

energy and momentum fluxes in the boundary layer

(Bonan 2016; Evans et al. 2017; Koster andWalker 2015;

Meng et al. 2014). In a regional climate model study,

Evans et al. (2017) found that vegetation processes in-

tensified droughts by about 10% in southeast Australia.

Meng et al. (2014) found that an interactive vegetation

scheme can have both positive and negative feedbacks on

drought development in Australia. The positive feedback

due todecreased soilmoisture and increased surface albedo

dominated on a shorter time scale (1 month), whereas the

lagged vegetation response (decreased vegetation) caused

negative feedback on a longer time scale.

In addition to local soil moisture and vegetation

feedbacks, land–atmosphere coupling can also affect

global circulation patterns, for example by warming the

near-surface air temperature (Berg et al. 2014; Delworth

andManabe 1988), and the resulting circulation changes

may feed back on precipitation anomalies, such as in the

Great Plains (Schubert et al. 2008). In the continental

United States, a dry surface soil moisture anomaly can

generate circulation anomalies by creating a high over

the west-central United States, with a low to its east,

further strengthening central U.S. warming and drying

(Koster et al. 2016). Teng et al. (2019) found a robust

circumglobal response due to heating anomalies induced

by arbitrarily prescribing soil moisture to have a zero value

at selected domains in the continental United States.

The hypothesis motivating our study is that land pro-

cesses and their coupled interactions with the atmosphere

can enhance soil moisture predictability beyond what is

attributable to anomalous SST forcing alone. We posit

three principalmechanisms: 1) the climate forcing remote

pathway, where soil moisture anomalies drive changes in

the remote circulation patterns and thereby modify ad-

vection of atmospheric moisture into or out of the region

(Koster et al. 2016; Schubert et al. 2008); 2) the climate

forcing local pathway, where soil moisture anomalies in-

fluence boundary layer growth, clouds, and precipitation

triggering (Findell and Eltahir 2003; Santanello et al. 2018;

Tawfik and Dirmeyer 2014); and 3) the land processes

pathway, where local processes control soil moisture vari-

ability including evapotranspiration, runoff, soil moisture

memory, and reemergence. Collectively, these three mech-

anisms may be considered to be land–atmosphere coupling

effects. Importantly, land–atmosphere coupling is stronger

during summer when the predictability due to large-scale

remote oceanic forcing appears to be limited (Dirmeyer

2011; Koster et al. 2004; Seager and Hoerling 2014; Seager

et al. 2015).

The Global Land–Atmosphere Coupling Experiment

(GLACE) phase 1 aimed to isolate the impact of in-

teractive soil moisture on precipitation variability in a

multimodel framework (Koster et al. 2004, 2006). The

GLACE-CMIP5 experiments extended the GLACE

experiments to climate models from phase 5 of the

Coupled Model Intercomparison Project. They found a

stronger influence of land–atmosphere coupling on ex-

treme daytime temperatures than on mean tempera-

tures, while its effect on precipitation was less robust

(Seneviratne et al. 2013; Taylor et al. 2012). Orth and

Seneviratne (2017) found that land–atmosphere cou-

pling increased surface temperature variability by 10%–

50% in the warm season, comparable in magnitude to

the effect of teleconnections from SST anomalies.

A knowledge gap exists in understanding the effects of

land–atmosphere coupling on soil moisture memory and

variability and their impact on ‘‘agricultural drought.’’ Our

new two-stage experimental design, which we call the

GLACE-Hydrology Experiment, addresses this knowl-

edge gap (Fig. 1). First, as in the GLACE-CMIP5 experi-

ment, twin sets of coupled land–atmosphere climatemodel

(CAM5-CLM4.5) ensembles are performed, with each

simulation using the same prescribed observed sea surface

temperatures and radiative forcing for the years 1971–

2014. In one set of ensembles, land–atmosphere anomaly

coupling is removed through the prescription of the

control model’s seasonally evolving soil moisture cli-

matology (‘‘land–atmosphere uncoupled’’), enabling a

contrast with the other (‘‘land–atmosphere coupled’’)

set of ensembles. Then, the atmospheric output fromboth

sets of simulations is used to force land-only ensemble

simulations, allowing investigation of the resulting soil

moisture variability under both the ‘‘coupled’’ and ‘‘un-

coupled’’ scenarios. Note that, as in all GLACE experi-

ments, the control model’s soil moisture climatology

includes the mean effects of land–atmosphere coupling,

whose impact on the atmosphere carries over into the

uncoupled experiments. Therefore, whenwe use the term

‘‘uncoupled’’ it is meant as shorthand for ‘‘anomaly un-

coupled’’ from this point forward.

There are considerable uncertainties in the represen-

tation of the land processes, vegetation parameteriza-

tions, and soil moisture–atmosphere coupling in climate
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models (Dahlin et al. 2015; de Noblet-Ducoudré et al.

2012; Dirmeyer et al. 2006, 2013; Ferguson et al. 2012; Guo

and Dirmeyer 2006; Kumar et al. 2013; Liu et al. 2017;

Pitman et al. 2009). In general, CAM5-CLM4 exhibits

relatively weak land–atmosphere coupling when com-

pared to the observational and reanalysis-based coupling

strength estimates (Mei and Wang 2012). Still, many

studies have employed the NCAR climate model to con-

duct climate predictability studies (Dirmeyer et al. 2013;

Infanti and Kirtman 2016; Kumar et al. 2014b; Yeager

et al. 2018).

We organize this paper as follows: section 2 describes

the experimental design, data, and methods. Next, to

place the drivers of the soil moisture variability in our

experimental setup in context, we describe a simple

budget of soil moisture variability in section 3. Section 4

presents results, divided into three main subcategories:

(i) characteristics of the GLACE-Hydrology experi-

ment that help us to understand results in succeeding

subsections, (ii) changes in the soil moisture variability

and its drivers, and (iii) the impact of coupling on the

potential predictability of seasonal precipitation and soil

moisture anomalies. Finally, we present a discussion in

section 5 that also covers key conclusions from this study.

2. Data and methods

a. The GLACE-Hydrology experiment design

Our experimental design follows the Global Land–

AtmosphereCouplingExperimentmethodology (GLACE

and GLACE-CMIP5) (Koster et al. 2004; Seneviratne

et al. 2013) with the addition of subsequent land-only

experiments aimed at isolating the soil hydrology re-

sponses to land–atmosphere coupling (Fig. 1 and Table 1).

Based on atmospheric general circulation model

(GCM) simulations whose ocean boundary conditions

are specified from observations, i.e., a standard AMIP

(Atmospheric Model Intercomparison Project) style

run, we conduct two sets of model runs: 1) an ensemble

of control runs in which the land and atmosphere

are interactively coupled (LA-coupled ATM), and 2) an

ensemble of experimental runs in which the land–

atmosphere anomaly coupling is removed by specifying

the seasonally evolving soil moisture climatology ex-

tracted from the respective control experiment; that is,

removing the direct effects of anomalous soil moisture

interactions with the atmosphere (which we will call

‘‘LA-uncoupled ATM’’). (As noted in the introduction,

indirect effects may remain since the control model’s

soil moisture climatology includes rectified anomaly

interactions.) We then use the 3-hourly atmospheric

forcing data archived from both sets of ensembles to

run land-only simulations, LA-coupled LANDand LA-

uncoupled LAND, allowing for consistent comparison

of the soil moisture variability associated with and

without the land–atmosphere coupling.

We implemented the GLACE-Hydrology experiment

in the Community Earth System Modeling (CESM)

framework (Hurrell et al. 2013) using the Community

Atmospheric Model version 5 and Community Land

Model version 4.5 (CAM5 1 CLM4.5) and performed

FIG. 1. Schematic of the GLACE-Hydrology experiment: (left) the generation of atmospheric forcing with land–

atmosphere (LA) coupled and LA uncoupled experiments using the AMIP-style run (see text) and (right) the LA

coupled LAND and LA uncoupled LAND experiments with the respective climate forcing from stage 1.
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23 10-member ensemble experiments with the observed

monthly sea surface temperature data from 1971 to

2014 (Hurrell et al. 2008) as the oceanic boundary

condition. Each ensemble member was created by a

small random perturbation to initial atmospheric con-

ditions using the same method as in the CESM Large

Ensemble (Kay et al. 2015). The same land model

initial conditions, taken from a transient land-only

CLM4.5 simulation are used in all the simulations.

For each ensemble member, we first perform the con-

trol experiment and then use its soil moisture clima-

tology to make the corresponding LA-uncoupled ATM

simulation. The 3-hourly atmospheric data from each

ensemble member, having been saved, are then (in

stage 2) used to drive the corresponding land-only

simulation.

Table 1 lists the experiments, the corresponding ex-

periment ID, and the variables analyzed. In general, stage

1 (ATM) provides the surface atmospheric variables,

temperature and precipitation, and stage 2 (LAND)

provides the response variables, evapotranspiration and

soil moisture, which are the main focus of this study.

Table 1 also compares the key features of the GLACE-

Hydrology experiments with the standard CLM land-

only experiment using observed atmospheric forcing

(Lawrence et al. 2019).

b. Community Land Model

The CLM4.5 has a 10-layer fixed-depth soil moisture

scheme extending downward to 3.8-m depth. CLM

solves the one-dimensional Richard’s equation within

each soil column, which can share several plant func-

tional types to account for vegetation heterogeneity at

the surface. Plant functional types describe vegetation

structure in terms of leaf properties, canopy heights,

and root distributions (Bonan et al. 2002; Oleson et al.

2013). CLM also has a prognostic seasonal cycle of

vegetation evolution, emergence, and senescence of

leaves and vegetation heights based on the Biome-

biogeochemical cycle model (Thornton and Rosenbloom

2005; Thornton et al. 2002).

To prescribe the soil moisture climatology, we

implemented the GLACE-CMIP5 design (Seneviratne

et al. 2013), modified by reducing temperature vari-

ability differences in the high latitudes in the LA-

uncoupled ATM experiments (Fig. 2a). The modified

scheme adjusts liquid and ice fractions of total soil

water to be consistent with the meteorological con-

ditions at the current time step in the model. This takes

liquid and ice fraction in the current time step and

distributes the seasonal climatology of total soil water

accordingly. We found that the GLACE-CMIP5

scheme, where liquid and ice fractions were set to

seasonal climatological values, was creating an extra

heat sink, specifying a larger fraction of ice content

than desired. This extra heat melted the ice, resulting

in a larger temperature mean and variability difference

between the LA-coupled and LA-uncoupled ATM

experiments in the high latitudes. The modified scheme

removed the temperature mean and variability differ-

ence between two experiments in the high latitudes

(Fig. 2a; see also Fig. S1 in the online supplemental

material).

c. Statistical methods

We have used a Monte Carlo method to compute the

statistical significance of the differences in variance and

correlation between the LA-coupled and LA-uncoupled

experiments. For example, we applied the following

steps for the significance calculation of the soil moisture

and ET correlations difference: 1) compute the corre-

lation for each month and each ensemble member sep-

arately using monthly anomalies data from 1979 to

2014; 2) make a mixed pool of 20 ensemble members

TABLE 1. The GLACE-Hydrology Experiment details and its comparison with other experiments. GSWP3 is the Global Soil Wetness

Project Phase 3.

Expt type Experiment ID

Soil

moisture Climate forcing SST forcing Variables analyzed Reference

AMIP type

LA coupled ATM Interactive
Interactive

atmosphere model

(CAM5) (Neale

et al. 2010)

Time-evolving observed

SST from 1971 to 2014

(Hurrell et al. 2008)

Precipitation and

temperature

TheGLACE-

Hydrology

Expt

LA uncoupled ATM Prescribed

Land-only
LA coupled LAND Interactive LA coupled ATM

—
Soil moisture and

evapotranspiration
LA uncoupled LAND Interactive LA uncoupled ATM

Land-only CLM4.5 (observation) Interactive GSWP3 —
Soil moisture,

precipitation,

and ET

Lawrence

et al.

(2019)
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(10 from the LA-coupled LAND and 10 from the LA-

uncoupled LAND); 3) randomly select, with replace-

ment, two groups of 10 ensemble member from the

mixed pool, and compute their differences; and 4) re-

peat the process 1000 times and sort the range of the

differences. A 95% statistically significant result then

occurs if the average ensemble difference between the

LA-coupled LAND and LA-uncoupled LAND ex-

periments falls outside the 95% range of the random

sample in the given month.

d. Predictability metric

To diagnose potential predictability, we determined

the squared signal-to-noise ratio (SNR) from each set of

experiments. Following Guo et al. (Guo et al. 2011),

SNR is defined as

SNR5
V

s

V
n

5

1

N
�
n

(y�n 2 y��)
2

1

NE
�
n
�
e

(y
e,n

2 y�n)
2
, (1)

where y�� 5 (1/NE)�E

e51�
N

n51ye,n and y�n 5 (1/E)�E

e51ye,n.

The term Vs represents the variability of the ensemble

mean, which may be thought of as the potentially

predictable (SST-forced) signal; Vn is variability about

the ensemble mean, or the noise term. The null hy-

pothesis of no predictability can be rejected at the 95%

level if SNR $F0:05
N21,N(E21) 3 [(N2 1)/N(E2 1)], where

F0:05
N21,N(E21) is the upper 5% threshold for the F distri-

bution with N and N(E 2 1) degrees of freedom. The

‘‘signal-to-total ratio’’ (STR) is then defined as STR 5
SNR/(SNR 1 1), which varies between 0 and 1. Note

that for an infinite-member perfect-model ensemble,

we may measure forecast skill of the predicted signal by

the mean anomaly correlation, which can be shown is

equivalent to the square of STR (Sardeshmukh et al.

2000); that is, STR is ameasure of potential predictability.

To test the null hypothesis that the predictability signal

is statistically indistinguishable between the LA coupled

and LA uncoupled ensembles, we use a signal-to-signal

ratio (SSR) between the two sets of experiments:

SSR5 log
10

V
LA_coup.
S

V
LA_uncoup.
S

. (2)

Under the null assumption that the two experiments have

the same total variability, the SSR can be computed using

STR in the respective experiments. The null hypothesis

can be rejected if (V
LA_coup.
S /V

LA_uncoup.
S )$F0:05

N21,N21, in

which case, land–atmosphere coupling may be said to

have significantly enhanced potential predictability (Guo

et al. 2011).

3. A simple framework to diagnose coupling
impacts on soil moisture variability

To better comprehend the complexities of land–

atmosphere anomaly coupling and its impact on soil

moisture variability, let us consider the following simple

model for the monthly variation of soil moisture

anomalies:

S0
t 2 S0

t21 5 P0
t 2ET0

t 2R0
t , (3)

where the left-hand side represents the change in soil

moisture anomalies S0 over the time interval [t2 1, t], and

P0
t, ET

0
t, and R0

t are the accumulated anomalous precipi-

tation, evapotranspiration, and runoff, respectively, dur-

ing that time interval. Anomalies are determined relative

to the long-term monthly climatology. Multiplying both

sides of (3) by S0
t, taking a time average, and rearranging

terms yields a budget for soil moisture variance:

S0
tS

0
t 5 S0

tS
0
t21 1 P0

tS
0
t 2ET0

tS
0
t 2R0

tS
0
t . (4)

Expressing all the covariance termsX 0Y 0 in terms of correla-

tion coefficients (rXY) and corresponding standard deviations

FIG. 2. Effects of the land–atmosphere coupling on hydroclimate

variability. The figure shows the JJA (a) zonal average variance of

the temperature (8C) and (b) evapotranspiration (mmmonth21) in

the LA-coupled (blue lines) and LA-uncoupled (red lines) exper-

iments. All 103 2 ensembles are shown here. Interannual variance

is calculated at each grid cell, then zonal land average is computed,

and its squared root quantities are shown. The gray line in (a) shows

the GLACE-CMIP5 implementation of the LA-uncoupled ATM

experiment. The new scheme in theGLACE-Hydrology experiment

significantly reduces the difference between coupled and uncoupled

experiments at high latitudes.
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(sX andsY), such thatX 0Y 0 5 rXYsXsY , and then dividing

through by sSt, (4) becomes

s
St
5 r

StSt21
s
St21

1 r
PtSt

s
Pt
2 r

ETtSt
s
ETt

2 r
RtSt

s
Rt
. (5)

The first termon the right-hand side represents the effect of

soil moisture memory, modulated by the seasonal cycle of

soil moisture variability (i.e., when sSt 6¼sSt21
). The second

term is soil moisture–precipitation covariability, which for

positive correlation balances increased soil moisture vari-

ability (since standarddeviations are all positive quantities).

The final terms represent soil moisture–evapotranspiration

covariability and soil moisture–runoff covariability, which

for positive correlations each balance decreased soil mois-

ture variability. It is important to note that as a variance

budget, Eq. (5) is best used in a diagnostic sense, to quantify

the relative influence of each of the four terms on soil

moisture variability.While strong correlations between soil

moisture and other process anomalies in (5) may represent

direct effects of coupling, they may instead reflect a third

process that drives both; conversely, low correlations donot

necessarily rule out the possibility of coupling, since cou-

pled variables need not be exactly in phase. However, we

can use Eq. (5) to determine land–atmosphere coupling

impacts by examining the extent to which its terms signifi-

cantly change between the LA-coupled and LA-uncoupled

experiments.

We use (5) rather than (4) as the soil variability budget

because its terms can be easily related to other land–

atmosphere coupling studies. For example, previous

GLACE studies have investigated the soil moisture–

evapotranspiration covariability term and its impacts on

precipitation and temperature variability (Guo et al.

2006; Koster et al. 2010, 2004, 2006). Keeping all other

factors the same, increased soil moisture–evapotranspiration

covariability decreases soil moisture variability (e.g., Teuling

and Troch 2005). Similarly, soil moisture memory rStSt21
has

been extensively studied (Amenu et al. 2005;Dirmeyer et al.

2016; Entin et al. 2000; Koster and Suarez 2001; Nicolai-

Shaw et al. 2016; Orth and Seneviratne 2012; Vinnikov et al.

1996;WuandDickinson 2004;Wuet al. 2002). These studies

have found that the root zone soil moisture memory time

scale ranges from 2 to 4 months. We are interested in in-

vestigating the coevolution of all four terms in an internally

consistent climatemodeling experiment and identifying their

relative importance for soil moisture predictability.

We use a 1-month lag correlation for total soil moisture

(3.8-m depth in CLM4.5) and its interannual standard

deviation in our calculations. Total soil moisture depth is

necessary to be consistent with the remaining terms in

Eq. (5) that represent total precipitation, evapotranspi-

ration, and runoff variabilities. Accordingly, the memory

and variability differences are computed using total soil

moisture. Using only the root zone soil moisture does not

change any interpretation of our result, but the variance

budgets do not close because the root zone does not ac-

count for all water available in the soil column.

4. Results

We first describe those experimental characteristics

that both aid our understanding of how land–atmosphere

coupling changes soil moisture variability and provide

context for this study vis-à-vis the existing GLACE lit-

erature. Next, we show how land–atmosphere coupling

altered soil moisture variability and the terms in the soil

moisture variability budget discussed above, notably the

soil moisture memory. Finally, we estimate how coupling

acts to enhance the potential predictability of SST-forced

changes in precipitation and soil moisture.

a. Characterization of the GLACE-Hydrology
experiment

1) HYDROCLIMATE VARIABILITY

Land–atmosphere coupling increased temperature and

ET variability in low- to midlatitude regions and during

the summer. Figure 2 shows the zonal mean, taken only

over land, of near-surface air temperature and ET vari-

ability for both the coupled and uncoupled ensembles

during the boreal summer season (JJA). (For this and

subsequent figures, ‘‘variability’’ is measured by standard

deviation, determined by the square root of the 10-

member ensemble mean variance.) Land–atmosphere

coupling significantly increased surface air temperature

variability in the low andmiddle latitudes, consistent with

previous studies (Berg et al. 2014; Delworth and Manabe

1988). In the LAND experiments, land–atmosphere cou-

pling increased evapotranspiration (ET) variability,mainly

for the midlatitudes (308–608N). There was also a slight

increase in ET variability between 208S and the equator.

Figure 2a also shows one ensemble member (gray

line) from an experiment using the original GLACE-

CMIP5 soil moisture seasonal climatology scheme in the

LA-uncoupled ATM experiment, for which tempera-

ture variability decreased in the high latitudes (608–
808N). This decrease was entirely removed using the

new scheme applied in this study.

The impact of land–atmosphere coupling shifted to the

Southern Hemisphere during austral summer. Figure 3

shows the temperature and ET variability during the DJF

season. Areas between 408 and 108S had increased tem-

perature variance due to land–atmosphere coupling. ET

variability did not change during the DJF season, perhaps

because midlatitude inland areas are small in the South-

ernHemisphere. Since stronger land–atmosphere coupling
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effects were found during the JJA season, the remainder of

the paper focuses on that season.

Different geographical regions show either increasing

or decreasing ET variability responses due to land–

atmosphere coupling. Figure 4a shows the map of ET

variability change (coupled minus uncoupled standard de-

viations), which significantly increased for 25% of the land

area and decreased for 11% of the land area. Note that we

show difference maps here with all analysis in dimensional

units (e.g., mmmonth21 for ET change) instead of showing

relative change (e.g., percentage difference). Overall, land–

atmosphere coupling increases ET variability in the midlat-

itudes [e.g., central North America (CNA) and southern

Europe andEurasia (SEE)], as well as in subtropical regions

[e.g., central Asia and parts of India (IND)], and certain

regions in the Southern Hemisphere. In contrast, tropical

regions [e.g., the northern part of the Sahel (SAH) and the

Amazon and Congo basins] show decreased ET variability.

We next compare this spatial pattern of ET variability

change with that of the precipitation variability change,

shown in Fig. 4b, which significantly increased for 19%

of the land area and decreased for 23% of the land area.

Most of the increase in precipitation variability occurred

in wet regions (e.g., the eastern United States, India,

Southeast Asia, northeastern China, the northern part of

the Congo, and north of the Amazon basins), while de-

creases occurred in dry regions (e.g., Sahel,Mediterranean

Europe, the western United States, central Canada, South

Africa, and the southern Amazon). Note that in the mid-

latitudes, significant changes of ET and precipitation var-

iability generally did not coincide, suggesting that different

climate processes drove these changes. Land–atmosphere

interactions play a larger role in ET variability (Guo et al.

2012, 2006; Seneviratne et al. 2013), while circulation

changes are likely to play a role in the precipitation vari-

ability. Further discussion of this issue is relegated to the

appendix because we found that the precipitation vari-

ability change was not the primary driver of midlatitude

soil moisture variability change due to land–atmosphere

coupling.

An analysis similar to Fig. 4 for theDJF season, shown

in Fig. S2, finds considerably reduced impacts due to the

land–atmosphere coupling, consistent with Fig. 3.

2) LAND–ATMOSPHERE INTERACTIONS

The simultaneous correlation of soil moisture and ET

anomalies rETtSt
is one of the fundamental metrics used to

assess land–atmosphere coupling (Dirmeyer 2011;Guo et al.

2006; Koster et al. 2006). As earlier found by Dirmeyer

(2011), the LA-coupled LAND experiment (Fig. 5a) cap-

tures the spatial pattern of significant positive correlations in

dry and transition regions, and negative correlations in wet

regions. A negative rETtSt
value might suggest that soil

moisture anomalies are mainly driven by precipitation

anomalies associated with increased cloud cover anoma-

lies, thereby also reducing net radiation and consequently

evapotranspiration (Tang and Leng 2013).

FIG. 4. Effects of land–atmosphere coupling on (a) evapotranspiration

variability and (b) precipitation variability. The figure shows the differ-

ence between the LA-coupled and LA-uncoupled experiments and for

the interannual standard deviation quantities averaged over the JJA

months. Statistical significance of the difference at the 95% level is

computed using the Monte Carlo method.

FIG. 3. As in Fig. 2, but for DJF.
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The GLACE-Hydrology experiment has, for the first

time, quantitatively assessed the effect of land–atmosphere

coupling on the relationship between anomalous evapo-

transpiration and soil moisture. We found that coupling

significantly amplified rETtSt
, both for positive correlations

in the midlatitudes and negative correlations in the tropics

(Fig. 5b), but only in some specific regions that somewhat

(but not entirely) coincided with previously identified

‘‘hotspot’’ regions of land–atmosphere coupling (Koster

et al. 2004). In central North America, southern Europe,

and Eurasia, the differences were of the same order of

magnitude as the total rETtSt
values in the LA-coupled

LAND experiment itself (Fig. 5). Elsewhere, including

western North America, there was little change. We will

come back to the western North America region in

section 4d to emphasize that soil moisture and ET co-

variability and their impact on soil moisture predictability

are not spatially co-located. We repeated our analysis

using the terrestrial coupling index metric developed by

Dirmeyer (2011) and found similar results (Fig. S3).

b. Land–atmosphere coupling effects on soil moisture
variability and memory

Land–atmosphere coupling increased soil moisture var-

iability significantly for 18% of the land area, including

parts of the central United States, central Asia, southern

Sahel, and tropical regions of Africa, Asia, and South

America, and decreased it for 11% of the land area, in-

cluding parts of central North America, southern Europe,

and Eurasia, and Southeast Asia (Fig. 6a). The changes

were not consistent within any region, however, with sig-

nificant increases and decreases often side by side, such as

for the U.S. Midwest and its adjoining region to the east.

In contrast, differences in soil moisture memory rStSt21

between the LA-coupled LAND and the LA-uncoupled

LAND experiments (Fig. 6b) were spatially coherent.

Land–atmosphere coupling increased soil moisture mem-

ory throughoutmost of themidlatitudes (significantly so for

12% of the land area), including central North America,

southern Europe, and Eurasia. Note that these regions

generally also showed an increase in ET variability (cf.

Figs. 6b and 4a). Within the tropics, soil moisture memory

decreased (significantly so for 7% of the land area), espe-

cially central Africa and the northern Amazon, due to

changes in precipitation variability (to be discussed later).

c. Components of soil moisture variability change due
to land–atmosphere coupling

Soil moisture variability change due to including

land–atmosphere coupling (Fig. 6a) was not simply

FIG. 5. Effects of land–atmosphere coupling on soil moisture and

evapotranspiration (SM-ET) correlations. (top) The SM-ET cor-

relations in the LA coupled LAND experiment and (bottom) its

difference from the LA uncoupled LAND experiment using the

dimensional unit. Statistical significance of the difference at the

95% level is computed using the Monte Carlo method.

FIG. 6. Effects of the land–atmosphere coupling on the soil

moisture variability and thememory. (a) The difference between the

LA-coupled LAND and LA-uncoupled LAND JJA soil moisture

interannual standard deviations (mm of water in 3.8-m soil column).

(b) The difference between soil moisture lag-1 autocorrelations be-

tween two experiments. Statistical significance of the difference at

the 95% level is computed using the Monte Carlo method.
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balancedby change in anyone termofEq. (5). For example,

in the midlatitudes, increased rETtSt
values (Fig. 5b) did not

always correspond to decreased soil moisture variability.

Similarly, in some regions (e.g., India and theeasternUnited

States), increased precipitation variability (Fig. 4b) corre-

sponded to decreased soil moisture variability. Changes in

soil moisture variability and precipitation variability were

also of opposite signs in southern Africa and the southern

Amazon basin. Overall, effects of land–atmosphere cou-

pling on both moisture sources (precipitation) and/or sinks

(evapotranspiration) as well as on rETtSt
(Figs. 4 and 5b)

were not sufficient to explain the soil moisture variability

changes in the experiment, suggesting that changes in the

other terms of Eq. (5), notably, soil moisture memory, must

also have been important.

We therefore use Eq. (5) to diagnose how land–

atmosphere coupling drove the soil moisture variability

changes seen in Fig. 6a. Figure 7 shows the corresponding

changes in the four components of Eq. (5): soil moisture

memory and the three terms representing the covari-

ability of soil moisture (SM) with precipitation (SM-P),

with evapotranspiration (SM-ET), and with runoff

(SM-R). We first computed each of the four terms of (5)

separately for the LA-coupled LAND and LA-

uncoupled LAND experiment for each month, and then

we computed the difference between the coupled and

uncoupled experiments. The statistical significance of the

difference was computed using the Monte Carlo method.

We multiplied each term by their sign in (5) so that the

sum of all four panels in Fig. 7 equals Fig. 6a. It is worth

noting that, even though these calculations used monthly

data, the residual terms that result from not explicitly

considering shorter time scales were very small (Fig. S5).

Change in the memory term rStSt21
sSt21

was the largest

contributor to increased soil moisture variability in

many regions (Fig. 7a), especially where driven by a

lengthening of the memory rStSt21
(cf. Fig. 6b); that is, an

increase in persistence occurred, which may be expected

to lead to greater variability, all else being equal. The

change in the SM-P covariability term was primarily due

to change in precipitation variability sPt
, since rPtSt

did

not change significantly (Fig. S4), so the term sPt
3 rPtSt

may also be considered as the ‘‘forcing’’ term. However,

the change in this term led to surprisingly little change in

soil moisture variability, apart from some regions in and

near the tropics (India and central Africa; Fig. 7b),

perhaps because the effects of land–atmosphere cou-

pling on ET variability and on precipitation variability

were not spatially co-located (Fig. 4) and so acted

somewhat to offset each other, with the notable excep-

tion of over India. This suggests that previous land-only/

hydrology only experiments (e.g., Livneh and Hoerling

2016; Luo et al. 2017; Williams et al. 2015) that, by de-

sign, assumed coincident precipitation variability and

land–atmosphere coupling/ET variability changes may

have overestimated precipitation impacts on soil mois-

ture droughts.

Strengthened SM-ET covariability mainly contrib-

uted to decreasing soil moisture variability in the mid-

latitudes, including central North America and southern

Europe and Eurasia (Fig. 7c), and generally tended to

oppose the increase from the memory term. Recall that

both rETtSt
and ET variability also increased in these

regions (cf. Fig. 7c with Figs. 4a and 5). SM-ET covari-

ability increased soil moisture variability in the tropical

regions, including India and the northernAmazon basin,

FIG. 7. Decomposition of the total soil moisture variability change by four driver climate processes: (a) the soil

moisture memory, (b) the precipitation forcing, (c) SM-ET coupling, and (d) SM-R coupling (mm month21).
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also as expected because rETtSt
was negative in wet re-

gions (Fig. 5b).

Changes in SM-R covariability, which in general (and not

surprisingly) opposed changes in SM-P covariability, con-

tributed to an increase in soil moisture variability in the

transition region (e.g., parts of centralNorthAmerica and the

Sahel) and a decrease in the wet region (e.g., India and

Southeast Asia) (Fig. 7d). We investigated the SM-R corre-

lation rRtSt
and runoff variability sRt

separately. We found

that the runoff variability significantly decreased due to land–

atmosphere coupling in the transition region and increased in

the wet region (Fig. 8), whereas the rRtSt
did not change

significantly (Fig. S6). In other words, SM-R covariability

mainly changed due to changes in the runoff variability.

A physically plausible explanation for how coupling

changed the runoff term might be the following: SM-R

covariability increased soil moisture variability in the

transition regions by slowing water drainage from the

soil and therefore decreasing runoff variability. SM-R

covariability decreased soil moisture variability in the

wet regions because of reduced infiltration due to satu-

rated conditions and, therefore, a higher partitioning of

precipitation into runoff than into the soil, and therefore

an increase in the runoff variability (Niu et al. 2005).

There was strong regional dependence in how these four

terms together balanced the soil variability. Figure 9 shows

the regional contributions of the memory, forcing, SM-ET

covariability, and SM-R covariability terms averagedwithin

two midlatitude regions, the Midwest (MW-U.S.) and the

central eastern (CE-U.S.) United States, and two low-

latitude regions, the central west Sahel (CW-SAH) and

FIG. 8. Effects of the land–atmosphere coupling on total runoff

variability (mmmonth21). The figure shows the difference between

the LA-coupled LAND and LA-uncoupled LAND JJA total

runoff interannual standard deviations (mm of water in 3.8m soil

column). Statistical significance of the difference at the 95% level is

computed using the Monte Carlo method.

FIG. 9. Area average contributions of thememory, forcing, SM-ET, and SM-R coupling terms [Eq. (5)] to the soil

moisture variability change due to land–atmosphere coupling in the GLACE-Hydrology experiment. The residual

term (Res) is computed as the difference between total variability change (Fig. 6a) minus the sum of the four terms

shown in Fig. 7. The four regions shown are theMidwest (MW-U.S.), the central-east United States (CE-U.S.), the

central-west Sahel (CW-SH), and central-west India (CW-IND); these regions refer to four boxes shown in Fig. 7.
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central west India (CW-IND). In the MW-U.S., the in-

creased memory term largely contributed to increased soil

moisture variability. The relative influence of the SM-ET

coupling term was negative and;3 times smaller than that

of memory term. In the CE-U.S., on the other hand, it was

reduced SM-ET covariability that largely contributed to

decreased soil moisture variability.

In the tropical/subtropical regions, change to the forcing

term played a larger role, although change to SM-R cova-

riability generally counterbalanced it. For example, the

forcing term increased soil moisture variability in CW-IND

by making it wetter (see the appendix), but it was balanced

by the SM-R covariability, resulting in only a small increase

in soil moisture variability. Similarly, in CW-SAH, de-

creased forcing variability was balanced by increased SM-R

covariability, resulting in a smaller net decrease in soil

moisture variability that seems to be contributed by the

decrease in the memory term (Fig. 7a). While SM-ET co-

variability, which has also sometimes been referred to as the

SM-ET coupling term, has received more attention in pre-

vious GLACE studies (Dirmeyer 2011; Guo et al. 2006;

Koster et al. 2004, 2006), Fig. 9 shows that changes to the

memory term and SM-R covariability played an equally

important role in coupling impacts on soil moisture vari-

ability. This is the second unique contribution of the inclu-

sion of the land-only simulations in theGLACE-Hydrology

experiment.

d. Implications for seasonal hydroclimate potential
predictability

Finally, we show that land–atmosphere coupling en-

hanced SST-forced hydroclimate potential predictabil-

ity in many areas of the globe. Figure 10 compares the

JJA STR for precipitation (left column) and root zone soil

moisture (right column) between the LA coupled and LA

uncoupled experiments. The coupled experiment had a

statistically significant precipitation signal covering 50% of

the land area (608S–808N), a small increase over the 46%

land coverage in the LA uncoupled experiment. The land–

atmosphere coupling also significantly improved precipita-

tionpredictability for 8%of the landarea.Notably, coupling

enhanced the statistically significant predictable precipita-

tion signal in western North America and Australia.

Anomalous soil moisture was more predictable than

anomalous precipitation and was also more enhanced by

coupling. The LA coupled and uncoupled experiments

FIG. 10. Effects of land–atmosphere coupling on potential predictability of (left) precipitation and (right) root

zone soil moisture for the boreal summer (JJA) in the GLACE-Hydrology experiments. The signal-to-total ratio in

the (top) LA coupled and (middle) LA uncoupled experiments. (bottom) The log of the ratio of LA coupled and

LA uncoupled signals, which indicates where potential predictability increases due to land–atmosphere coupling.

Statistical significance at 95% level are shown using stippling. See the text for details.
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showed a statistically significant signal for 62% and 58%

of the global land area, respectively. Western North

America had a higher areal coverage of statistically sig-

nificant soil moisture predictability signal in the LA

coupled experiment. Many portions of central Europe

(e.g., France) showed a statistically significant predictable

signal, which was almost missing in the LA uncoupled

experiments. Improvement was also evident for portions

of central Asia and Africa. Overall, the land–atmosphere

coupling significantly improved soil moisture predict-

ability for 15% of the global land area.

5. Summary and discussion

Weperformed a newGLACE-HydrologyExperiment to

elucidate the role of land–atmosphere coupling on soil

moisture variability and predictability. A unique contribu-

tion of the experiment is the quantitative assessment of how

this coupling impacts the correlation between soil moisture

and evapotranspiration, by comparing the coupled and un-

coupled experiments using land-only simulations in stage 2.

The land–atmosphere coupling enhances the amplitude of

SM-ET correlations significantly, especially in transition

regions where atmospheric variability drives a mean sum-

mertime moisture source (i.e., mean ET . mean precipi-

tation) from land into the atmosphere in North America,

Europe, and Asia (Newman et al. 2012). It is worth noting

that the soil moisture and ET were evolving interactively in

both the LA-coupled and LA-uncoupled LAND experi-

ments (stage 2 in Fig. 1), but they received different atmo-

spheric forcing: one from the LA-coupled ATM and the

other from the LA-uncoupled ATM experiment, respec-

tively (Fig. 1). That is, the difference between the two ex-

periments is directly attributable to the climate forcing data.

This new result has at least one important implication: land–

atmosphere coupling has a signature that can be detected in

land forcing fields. That is, if several different land surface

models are driven with the same climate forcing data, then

these land surface models may show similar SM-ET corre-

lations. And vice versa, if the same land surface model is

drivenwith twodifferent climate forcing data, theymay show

different SM-ET correlations, as is the case in this study.

A robust finding from the GLACE-Hydrology ex-

periment is that the land–atmosphere coupling increases

soil moisture memory in the midlatitudes during boreal

summer (Fig. 6b). We have not yet determined the

mechanism by which this occurred in the model exper-

iments. However, it is interesting to note that this in-

crease generally coincided with an increase both in ET

variability and in rETtSt
. The land generally acts to

moisten the lower atmosphere in the midlatitudes dur-

ing boreal summer (see appendix and Fig. A4), since

evapotranspiration exceeds precipitation so that the

land acts as a net source of moisture to the atmosphere

(Kumar et al. 2014a; Sheffield et al. 2013). Following

Darcy’s law, the rate of moisture exchange between land

and atmosphere will decrease (see the appendix and

Fig.A5). As a result, wemay expect that the soil moisture

anomaly will revert more slowly toward the climatologi-

cal mean, and therefore land–atmosphere coupling in-

creases the soil moisture memory.

In essence, we are proposing that, in regions where the

land surface provides moisture to the atmosphere (i.e.,

midlatitudes during summertime), land–atmosphere cou-

pling may act to reduce the damping rate of soil moisture

anomalies. This hypothesis is similar to the one proposed

by Barsugli and Battisti (1998) to explain the basic effect of

ocean–atmosphere thermal coupling in the midlatitudes:

Coupling between atmosphere and ocean should decrease

the energy flux between them, providing a ‘‘reduced ther-

mal damping’’ that effectively lengthens the memory time

scales and therefore the temperature variability in both

systems. Similarly, the basic effect of land–atmosphere

coupling is to decrease the moisture exchange between the

land surface and atmosphere (see appendix and Fig. A5),

effectively increasing the memory and variability of soil

moisture. Clearly, this is a substantial simplification of the

land–atmosphere coupling response; just as for ocean–

atmosphere coupling, there should be a dependence on

horizontal and vertical scales of atmospheric transport and

mixing, not to mention nonlocal atmospheric responses to

nonlocal surface anomalies, which all likely impact pre-

cipitation as well. Also, there are additional complexities

involved in land–atmosphere interaction processes, such as

limited water availability over land, and as land becomes

drier it offers further resistance to moisture fluxes (Kumar

et al. 2015, 2013, 2016). A similar hypothesis can be pro-

posed for vegetation interactions that offer an additional

layer of resistance formoisture exchange between land and

atmosphere (Bonan 2016).

The increased soil moisture memory due to land–

atmosphere coupling can improve hydroclimate pre-

dictability in the midlatitude regions. Our study found

statistically significant improvments in the potential

predictability of precipitation and soil moisture. This

impact is greater for soil moisture than precipitation

(Fig. 10). A similar analysis can be extended to identify

how the predicted evolution of individual droughts is

impacted by land–atmosphere coupling.

A multimodel analysis is needed to develop a more

comprehensive diagnosis of the role of land–atmosphere

coupling in soil moisture predictability. Model spatial

resolution and convective parameterizations also play an

important role in precipitation triggering due to soil wet-

ness and its heterogeneity (Holgate et al. 2019; Hsu et al.

2017; Taylor et al. 2013). Multimodel data from Land
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Surface Snow and Soil Moisture Model Intercomparison

Project and phase 6 of theCoupledModel Intercomparison

Project (CMIP6) AMIP-type experiments can possibly be

used (Eyring et al. 2016; van den Hurk et al. 2016).

However, these experiments do not include the hydrology

part of the experiment. We are also aware that single

forcing large ensemble experiments are currently under-

way at NCAR and also possibly a few other institutions

(C.Deser,NCAR, 2019, personal communication).Wehope

that this study provides sufficient motivation to include land–

atmosphere coupling as a major parameter to understand

hydroclimate variability and predictability. From our expe-

rience, running the hydrology part (stage 2) of the simulation

is data intensive (saving the 3-hourly data), but the process

can be automated if sufficient motivation is found.

This study may also provide an upper limit on the po-

tential predictability of droughts in the Community Earth

System Modeling framework. Operational forecast skill is

likely to be lower than the potential predictability estimated

by this study (e.g., Dirmeyer et al. 2018;Murphy andEpstein

1989). Many operational forecasting systems (e.g., the

Climate Forecast System version 2 and North American

Multi-Model Ensemble seasonal forecasting system) include

land–atmosphere coupling in their forecast (Kirtman et al.

2014; Saha et al. 2010). However, there are considerable

uncertainties in the representation of the land–atmosphere

coupling and soil moisture memory in the seasonal fore-

casting models (Dirmeyer 2013; Dirmeyer and Halder 2017;

Dirmeyer et al. 2016; Roundy et al. 2014; Santanello et al.

2015). Recently, the availability of in situ and remotely

sensed soil moisture data (Entekhabi et al. 2014; Quiring

et al. 2016) has provided the opportunity to improve the

process-level representation of soil hydrology, as well as to

develop methodology incorporating observationally con-

strained soil moisture initial conditions into the seasonal

forecast (e.g., Duan and Kumar 2020).

Overall, this study demonstrates a new pathway, via soil

moisturememory, throughwhich land–atmosphere coupling

can impact soil moisture variability and drought predict-

ability. The soil moisture memory pathway acts in concert

with the soil moisture and evapotranspiration interaction

pathways that have been extensively investigated in previous

GLACE studies (Dirmeyer 2011; Guo et al. 2006; Koster

et al. 2006).Hence, this studyprovides newknowledge about

the effects of land–atmosphere coupling on land variability.
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APPENDIX

Changes in Mean Climate

We presented an extensive discussion on soil moisture

variability change and its drivers in the main text. It is

worth looking at how the mean climate changed and if

FIG. A1. Effects of land–atmosphere coupling on JJA mean soil

moisture and precipitation.
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these changes affected the results. In short, we found

that while the mean climate changed it did not signifi-

cantly affect the soil moisture variability through the

forcing term (Figs. 7 and 9) or our principal results. We

will show in this section that soil moisture mean climate

change appears to be driven by the circulation change

due to land–atmosphere coupling. The statistical sig-

nificance of the difference in multi-ensemble and mul-

tiyear mean is computed using a signal-to-noise metric

as described by Kumar et al. (2014b).

a. Changes in JJA mean soil moisture and
precipitation

Figure A1 shows that the boreal summer mean soil mois-

ture changes between the LA-coupled and LA-uncoupled

LAND experiments are globally extensive and statistically

significant, and are of both positive and negative signs. The

land–atmosphere coupling caused significant drying in central

NorthAmerica (CNA), southernEurope andEurasia (SEE),

and the Sahel (SAH), andwetting in India (IND), parts of the

Congo basin in central Africa, and northwestern parts of the

Amazon basin.

The soil moisture response follows the precipitation

response globally (Fig. A1b), with midlatitude drying in

central North America, southern Europe, and Eurasia,

and wetting in the tropics, including India, the Congo

basin, and the southern Amazon. The Sahel became

drier. Midlatitudes inmuch of the SouthernHemisphere

also become drier, but these regions have overall smaller

precipitation during JJA (not shown).

FIG. A2. Asymmetric response of the landmodel to the land–atmosphere coupling (i.e., land responds strongly during dry

years compared to wet years). The figure shows soil moisture saturation (SM_SAT) fraction from the LA coupled ATM

experiment on the x axis, and surface-level air temperature difference (TS_DIFF) in 8C between the LA coupled ATM and

LA uncoupled ATM experiments on the y axis in four regions: (a) central North America (CNA), (b) southern Europe and

Eurasia (SEE), (c) the Sahel (SAH), and (d) India (IND) for the JJA. These regions are shown in Fig. A1. Each data point

shows each grid and year (1979–2014) in the respective region (see text). Soil saturation level is from the root

zone average (0–1m). The thick blue line shows locally weighted polynomial regression using the ‘‘lowess’’ function in R.

6524 JOURNAL OF CL IMATE VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 03:20 PM UTC



Figure A1b also shows statistically significant precip-

itation changes over the ocean.We see global circulation

features in the precipitation changes with a general

drying in subtropical dry zones, including the midlati-

tude North Atlantic and the U.S. west coast Pacific Rim,

and wetter conditions in tropical convergence zone.

Drying in the Indian Ocean can be related to the

stronger monsoon circulation in which more low-level

water vapor is transported to the Indian subcontinent

from the Indian Ocean. The monsoonal flow then re-

turns southward at high-level troposphere and subsides

over the Indian Ocean region, e.g., (Wey et al. 2015). In

other words, land–atmosphere coupling can induce an

intensified summer monsoonal circulation and local

Hadley cell.

b. Why did circulation change due to
land–atmosphere coupling?

Soil moisture variability affects the partitioning of

net radiation into latent and sensible heat fluxes,

thereby increasing surface temperature variability

(Berg et al. 2014; Delworth andManabe 1988; Kumar

et al. 2010) (Fig. 2). Previous studies have also found

that land–atmosphere coupling increases mean sur-

face temperature (Berg et al. 2014), which is also

supported by regional studies over North America

(Teng et al. 2019). But the reason behind this change

is less understood.

Under the drier conditions, the land responds strongly

with increased surface temperatures. This response is

muted under wet conditions, yielding an overall warm-

ing response as a result of land–atmosphere coupling

(Fig. S1). FigureA2 shows the difference in near-surface

air temperature between the LA-coupledATMandLA-

uncoupled ATM experiments for each year and in the

four regions outlined earlier. These differences are

plotted against the corresponding soil wetness in the LA

coupled ATM experiment in the JJA season. Note that

by construction there is no change in mean soil moisture

between the two experiments. Land response is asym-

metric to the surface wetness conditions in all four re-

gions. In other words, land responds strongly during dry

years by limiting available moisture for evapotranspi-

ration and thereby increasing the surface temperature,

but land acts as the receiver of the climate forcing in the

wet conditions. This notion is also supported byGuo and

Dirmeyer (2013), who found that interannual variability

land–atmosphere coupling is modulated due to surface

wetness conditions.

Increased surface temperatures affect surface pressure

anomalies between land and ocean, thereby inducing cir-

culation anomalies that propagate into upper atmospheric

levels (e.g., Koster et al. 2016; Teng et al. 2019). Figure A3

shows geopotential heights and wind at 925hPa. Negative

anomalous 925-hPa geopotential heights corresponding to

the lower surface pressure are present over most conti-

nental areas, while there are positive anomalies over the

northern Pacific and Atlantic. Miyasaka and Nakamura

(2005) used a numerical model to demonstrate the critical

role of land–sea thermal contrast for the formation and

maintenance of the Northern Hemisphere summertime

subtropical highs, as also suggested by Wu and Liu (2003),

Liu et al. (2004), and Seager et al. (2003). Thus, the stronger

subtropical high over theAtlantic and PacificOceans could

be related to the enhancement of near-surface thermal

FIG. A3. Effects of land–atmosphere coupling on 925-hPa geo-

potential height and wind in JJA. The reference wind vector rep-

resents 20m s21 in the top panel and 2m s21 in the bottom panel.

FIG. A4. Wet (P 2 ET . 0) and dry regions (P 2 ET , 0) in the

JJA season. The figure shows P2 ET climatology (mmmonth21).
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contrasts in the eastern oceans, owing to warming over the

land due to land–atmosphere coupling.

Figure A4 shows the climatological precipitation mi-

nus evapotranspiration (P 2 ET) analysis in the LA

coupled ATM experiment and for the boreal summer

season. The P 2 ET map shows net atmospheric mois-

ture sources and sinks, with positive (negative) P 2 ET

representing vertically integrated moisture flux conver-

gence (divergence). Both CNA and SEE regions are net

moisture divergence regions during the boreal summer,

and both regions become additionally drier due to land–

atmosphere coupling (Fig. A1). India is a net moisture

convergence region that becomes wetter due to land–

atmosphere coupling. A similar response is also seen

over the North Atlantic and Pacific subtropical dry

zones (negative P 2 ET), where drying enhances at the

edges of the deep dry zones. Sahel represents a diverging

region toward its northern boundary, and converging

region toward the southern boundary, and shows an

overall drying response (Fig. A1). Thus, the first-order

response in the summer hemisphere to land–atmosphere

coupling is consistent with the ‘‘wet-gets-wetter and dry-

gets-drier’’ paradigm (Held and Soden 2006; Kumar et al.

2015). There is an exception in thewinter hemisphere (e.g.,

southern Amazonia in South America and the central

Congo basin in Africa). Overall, we conclude that the

circulation changes drove the mean precipitation changes

that affected the mean soil moisture climate (Fig. A1).

c. Effects on moisture flux from land to atmosphere

Land–atmosphere coupling decreases mean evapo-

transpiration in the midlatitude regions, including cen-

tral North America, southern Europe, central Asia, and

northern parts of Sahel (Fig. A5). A statistically signif-

icant reduction in mean ET is found in the regions where

rETtSt
is positive (Fig. 5a). Tropical regions, including

India, central Asia, and the Amazon, show a significant

increase inmeanET; these regions also have negative soil

moisture and ET correlations (Fig. 5a). Overall, Fig. A5

supports the hypothesis postulated in the discussion

section that land–atmosphere coupling decreases mois-

ture flux from land to atmosphere in the midlatitudes.
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